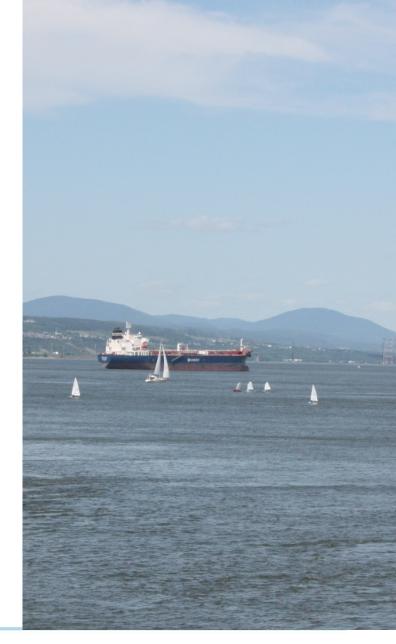
CO-FUNDED BY

Environmental Performance and Provision of Sustainable Methanol for the Smaller Vessel Fleet

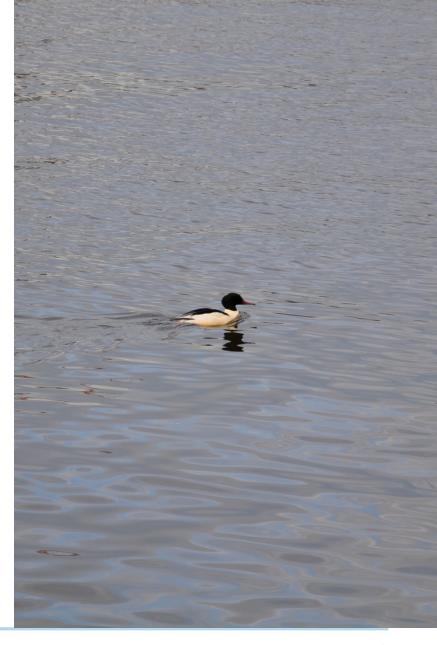
Final Seminar 6 December 2017

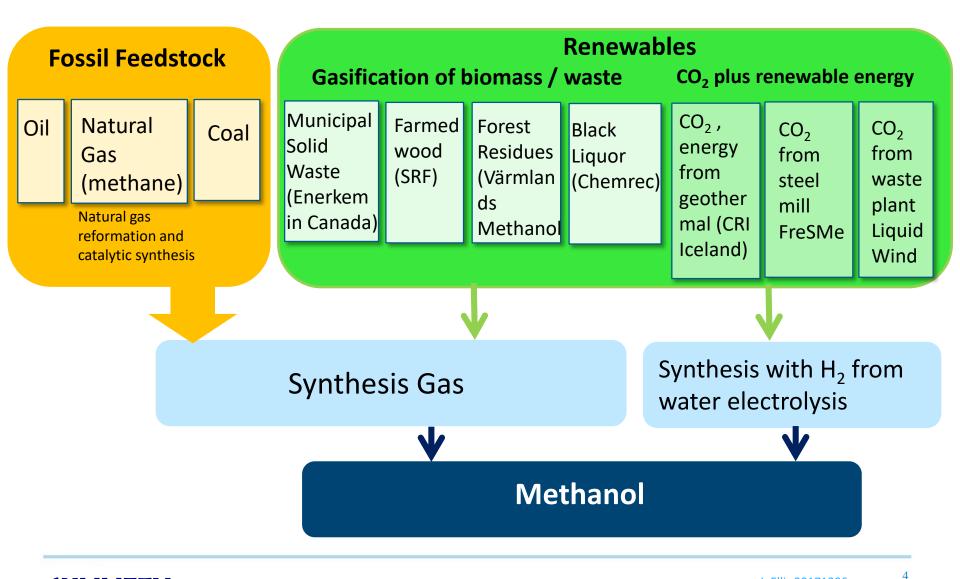
Joanne Ellis, SSPA Sweden AB

PROJECT PARTNERS



Outline


- Environmental performance
 - Fuel life cycle assessment and comparison
 - Data sources and analysis
 - Results
- Methanol supply chain
 - Production
 - Transport
 - Bunkering
 - Fuel costs


Why is methanol interesting as a fuel from an environmental perspective?

- No sulphur, so is an option for meeting SECA requirements
- Low emissions of particulates and nitrogen oxide, even without exhaust gas after-treatment
- In the event of a spill to water it dissolves, is biodegradable and does not bio-accumulate (GESAMP)
- Can be produced from many renewable feedstocks, including biomass and CO₂ – this can result in significant GHG reductions for fuel use

Methanol fuel feedstock and production – overview

Production locations for methanol

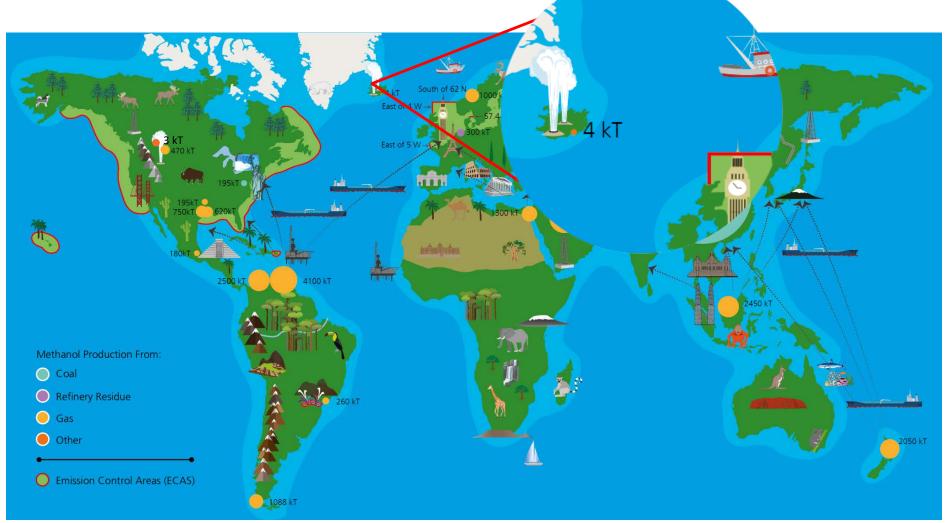
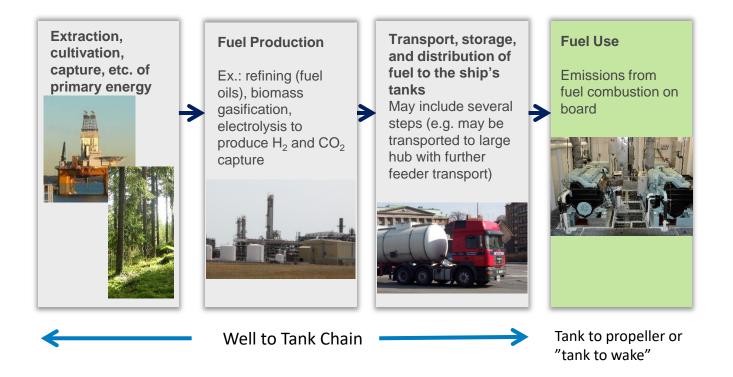
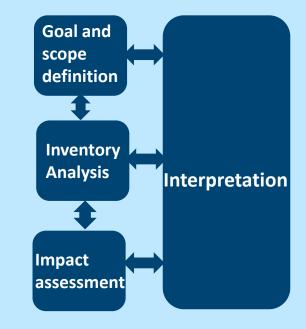



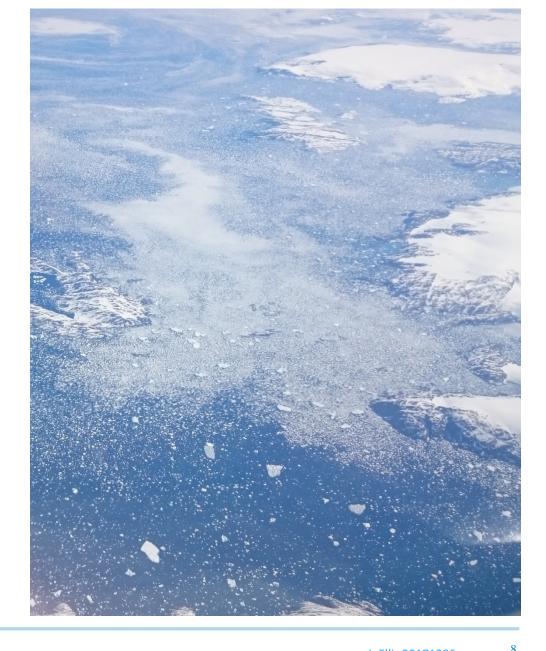
Image: MethaShip project as shown in Ellis, J. and K. Tanneberger. 2015. Study on the use of ethyl and methyl alcohol as alternative fuels in shipping. Report prepared for the European Maritime Safety Agency (EMSA).


Fuel Life Cycle Assessment Main Steps

Life cycle approach for marine fuel assessment for SUMMETH

- Focus on North West Europe fleet of smaller vessels, case study ferry
- Well-to-tank fuel data adapted from:
 - Fuels in the Baltic Sea (Brynolf, 2014)
 - JEC Well to Tank Study
 - Literature sources Adaptation of transport and distribution to reflect supply to smaller vessels
- Tank to wake (combustion) from SUMMETH WP3 and GreenPilot for methanol concepts. Comparison for MGO from published emission factors for marine engines; for road ferry case from measurement data

Main components of an LCA study [ISO 14040] 1997



Impact categories

- Inventory categories for the fuel life cycle comparison:
 - Greenhouse gases (GHGs) (CO₂, N₂O, CH₄)
 - SOx
 - NOx
 - Particulates

Corresponding to impacts:

- climate change
- eutrophication
- acidification
- health effects

SUMMETH

Particulate emission impacts

The European **Environment Agency 2016** air quality report states that health impact estimates from air pollution attribute PM 2.5 to 467 000 premature deaths in Europe from long term exposure

How do SO2, NOx and particle emissions pose a threat to human health?

Air pollution from international shipping accounts approximately for 50,000 premature deaths per year in Europe, at an annual cost to society of more than €58 billion according to recent scientific studies. Through chemical reactions in the air, SO2 and NOx is converted into fine particles, sulphate and nitrate aerosols. In addition to the particles directly emitted

Geophysical Research Letters

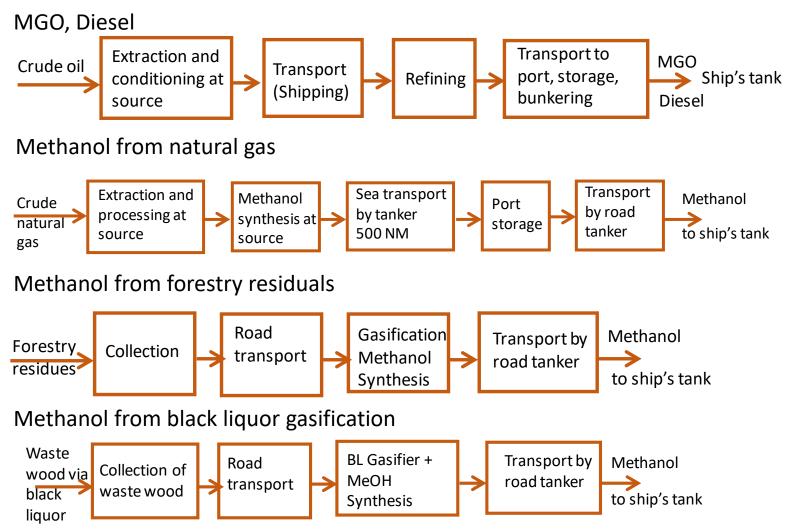
RESEARCH LETTER 10.1002/2017GL074982

Key Points:

 Lightning is enhanced by about a factor of 2 directly over two of the busiest shipping lanes in the Indian

Ocean and South China Sea Environmental factors such as convergence, sea surface temperature, or atmospheric stability

do not explain the enhancement


 We hypothesize that ship exhaust particles change storm cloud microphysics, causing enhanced condensate in the mixed-phase region and lightning

Lightning enhancement over major oceanic shipping lanes Joel A. Thornton¹ (10), Katrina S. Virts² (10), Robert H. Holzworth³ (10), and Todd ¹Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA, Center, Huntsville, Alabama, USA, ³Department of Earth and Space Sciences, University of Was USA, ⁴Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Abstract Using 12 years of high-resolution global lightning stroke data from t Location Network (WWLLN), we show that lightning density is enhanced by up to over shipping lanes in the northeastern Indian Ocean and the South China Sea as co with similar climatological characteristics. The lightning enhancement is most pro convectively active season, November-April for the Indian Ocean and April-Decer Concerned have been dependent to form at larget 2005 to the anagemet M/a homestication at

SUMMETH

9

Pathways considered for fuel production - WTT

Pathways adapted from "Well-to-tank Report Version 4.0", JEC Well to Wheels Analysis" of Future Automotive Fuels and Powertrains in the Automotive Context", 2013, Report EUR 26028

SUMMETH

Comparison of emissions per MJ fuel produced (WTT)

Fuels	CO ₂	CH_4	N ₂ O	GHGs	NOx	SOx	PM10
	g/MJ	g/MJ	g/MJ	g CO ₂ e/MJ	g/MJ	g/MJ	g/MJ
MGO, 0.1% S	7,1	0,078	0,00017	9,3	0,023	0,041	0,00110
Methanol from natural							
gas	20,5	0,011	0,00031	20,9	0,051	0,003	0,00063
Methanol, from forest							
residues	17,0	0,043	0,00021	18,3	0,047	0,046	0,01080
Methanol black liquor	3,1	0,011	0,00835	5,7	-	-	-
Methanol, from biogenic							
CO $_2$, wind energy*	7,4	0,012	0,01420	11,5	0,029	0,017	0,00239

* Estimate based on production of methanol from renewable hydrogen and carbon dioxide as described in Matzen and Demeril (2016).

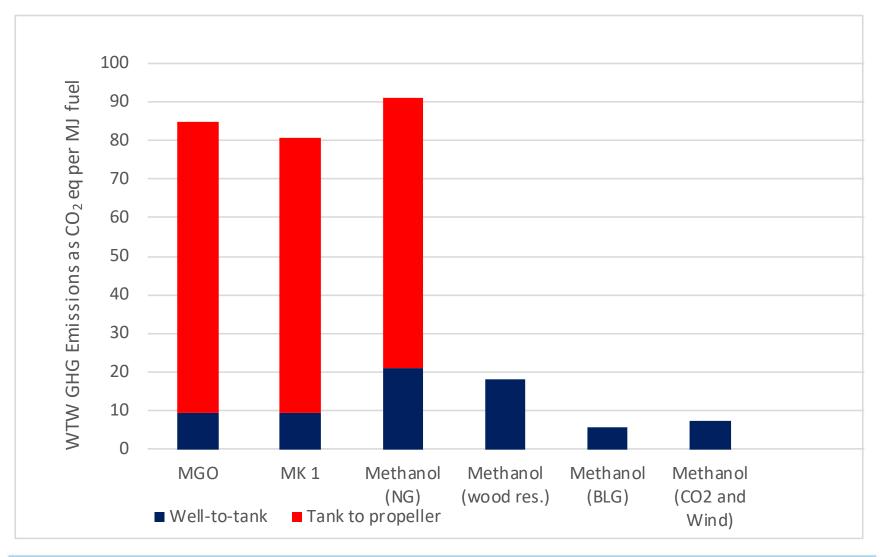
GHG reductions of other methanol production pathways

- Carbon Recycling International Iceland: certified by the International Sustainability and Carbon Certification system (ISCC) as an ultra-low carbon advanced renewable transport fuel. Stated that the methanol has 75% lower GHG emissions than standard fuel.
- Enerkem: municipal waste to methanol to ethanol.
 Received lowest ever carbon intensity value issued by the British Columbia government under the renewable and low carbon fuel regulation.

BRITISH COLUMBIA	Ministry of Energy, Mines and Petroleum Resources Issued: July 2013 Revised: October 2017		Renewable and Low Carbon Fuel Requirements Regulation Approved Carbon Intensities Information Bulletin RLCF-012					
Previous Fuel Code	Fuel Code	Fuel	Company		Carbon Intensity (gCO ₂ e/MJ)	Effective Date	Expiry Date	
BCLCF224	BCLCF224.0	Ethanol	Pound-Maker Agventures		32.34	Oct. 15, 2015	Oct. 14, 201	
-	BCLCF225.0	Ethanol	Husky Energy		41.87	Jan. 1, 2015	Dec. 31, 2017	
-	BCLCF226.0	Ethanol	Husky Energy		10.15	Jan. 1, 2015	Dec. 31, 201	
-	BCLCF227.0	Ethanol	Husky Energy		46.35	Jan. 1, 2015	Dec. 31, 201	
•	BCLCF228.0	Ethanol	Husky Energy		14.63	Jan. 1, 2015	Dec. 31, 201	
-	BCLCF229.0	Ethanol	Husky Energy		71.18	Jan. 1, 2015	Dec. 31, 201	
•	BCLCF230.0	Ethanol	Husky Energy		39.46	Jan. 1, 2015	Dec. 31, 201	
	BCLCF231.0	Ethanol	Husky Energy		61.63	Jan. 1, 2015	Dec. 31, 201	
-	BCLCF232.0	Ethanol	Husky Energy		29.91	Jan. 1, 2015	Dec. 31, 201	
•	BCLCF233.0	Ethanol	Husky Energy		44.50	Jan. 1, 2016	Dec. 31, 201	
	BCLCF234.0	Ethanol	Husky Energy		45.56	Jan. 1, 2016	Dec. 31, 201	
-	BCLCF235.0	Ethanol	Husky Energy		60.34	Jan. 1, 2016	Dec. 31, 201	
-	BCLCF236.0	Biodiesel	Cargill Inc.		-3.64	Apr. 1, 2016	Mar. 31, 201	
•	BCLCF237.0	Ethanol	Green Plains Woo	Green Plains Wood River LLC		May 16, 2016	May 15, 201	
-	BCLCF238.0	Ethanol	Green Plains Fairmont LLC		61.73	May 16, 2016	May 15, 201	
-	BCLCF239.0	Ethanol	Redfield Energy LLC		49.72	July 22, 2016	July 21, 201	
-	BCLCF240.0	Ethanol	Aberdeen Energy LLC		54.55	July 29, 2016	July 28, 201	
-	BCLCF241.0	HDRD	Neste Oil Singapore		26.93	Sept. 7, 2016	Sept. 6, 201	
-	BCLCF242.0	Ethanol	Permolex Ltd.		33.54	Sept. 3, 2016	Sept. 2, 201	
-	BCLCF243.0	Ethanol	Permolex Ltd.		40.11	Sept. 3, 2016	Sept. 2, 201	
<mark>→</mark> •	BCLCF244.0	Ethanol	Enerkem Alberta Biofuels LP		-54.80	Dec. 7, 2016	Dec. 6, 201	
•	BCLCF245.0	LNG	FortisBC Energy Inc.		63.04	Jan. 1, 2017	Dec. 31, 201	
-	BCLCF246.0	Ethanol	Mid America Age	ri Products/Wheatland LLC	46.87	Mar. 7, 2017	Mar. 6, 202	

11 of 12 Approved Carbon Intensities

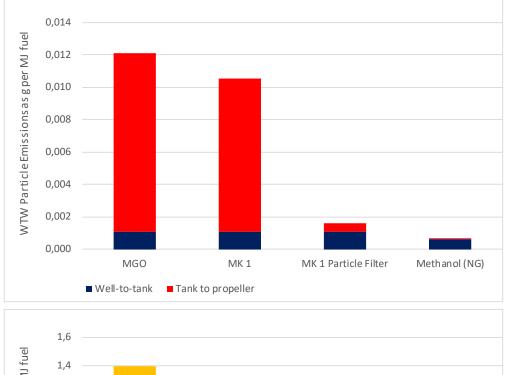
Revised: October 2017

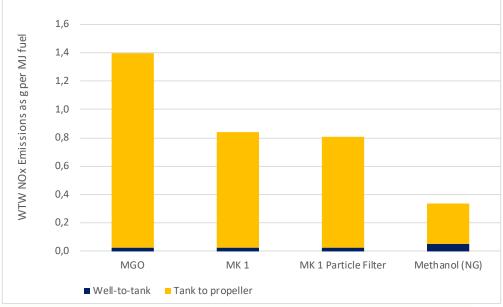

Comparison of emissions per MJ fuel combusted

Fuel and Engine Concept	CO ₂	CH ₄	N ₂ O	GHGs	NOx	SOx	PM10*
	g/MJ	g/MJ	g/MJ	g CO ₂ e/MJ	g/MJ	g/MJ	g/MJ
MGO, 0.1% S, High Speed Diesel ¹	74,5	0,00046	0,004	75,4	1,371	0,047	0,011
MK 1 (Diesel), with particle filter,							
measurements on Göta (Scania) ²	71,5			71,5	0,781	0,000046	0,00048
MK 1 (Diesel), no particle filter,							
measurements on Göta (Scania) ²	72,3			72,3	0,820	0,000046	0,00947
MK 1 (Diesel), with particle filter, lab							
measurements (by EMTEC, Penta							
engine) ³	74,3			74,3	0,635		0,00056
MK 1 (Diesel), no particle filter, lab							
measuremenets (Penta engine) ³	74,2			74,2	0,639		0,0054
Methanol, spark ignited, port fuel							
injection, no particle filter, 64% MCR ⁴	70,0			70,0	0,285		1,9E-06
Methanol, PPC, with 3 way catalyst, lab							
measurements (Lund) ⁵	69,1			69,1	0,039		5,2E-07
Methanol, DI-SI, lab measurements							
(Lund) ⁶	69,1			69,1	0,012		< 0,0001

SUMMETH

from Cooper and Gustafsson (2004) and Brynolf (2014); ² Winnes and Peterson, 2012; ³ STT mtec Presentation; ⁴ Molander, 2017; ⁵ scaled from Shamun et al. 2016; ⁶ Björnestrand, 2017. For the methanol spark ignited port fuel injection total particulate matter was measured.


Comparison of emissions per MJ fuel Well to Propeller



Particulate and NOx Emissions

- Significant PM reductions with methanol (no particle filter needed)
- NOx majority of emissions occur during the "tank to propeller" phase; methanol combustion results in significantly lower NOx emissions



Methanol supply and distribution to the smaller vessel segment

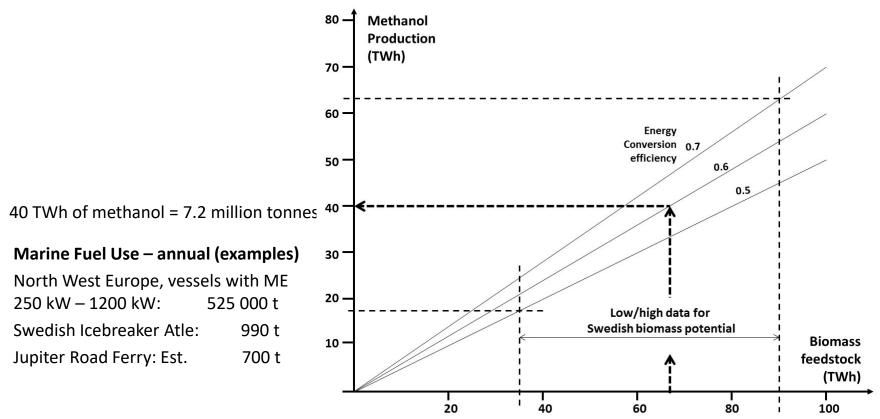
- Supply chain approach to compare fuels from different feedstocks and assess feasibility
- Some considerations for renewable feedstocks
 - Economies of scale of production vs diseconomies of scale of acquiring larger volumes due to longer distances
 - Feedstock storage required due to seasonal issues – size optimisation
 - Optimising location and size of production facility to minimise feedstock and product transport costs
 - Integration: using both feedstock (the by-products) and residual heat from the processes

Methanol Supply

Methanol (from fossil feedstock) imported by ship to depots in Malmö and Södertälje Renewable methanol:

Methanol from electricity and CO₂:

- FReSMe pilot plant, H2020 Project underway
- Liquid Wind: Feasibility study completed May 2017, work is continuing
 Methanol from Forestry Residue:
- Värmlands Methanol: designed 2012; on hold due to uncertainty re biofuels tax
- Södra Mönsterås: started 2017, est. completion 2019, production 5000 tonnes annually


Methanol from black liquor gasification:

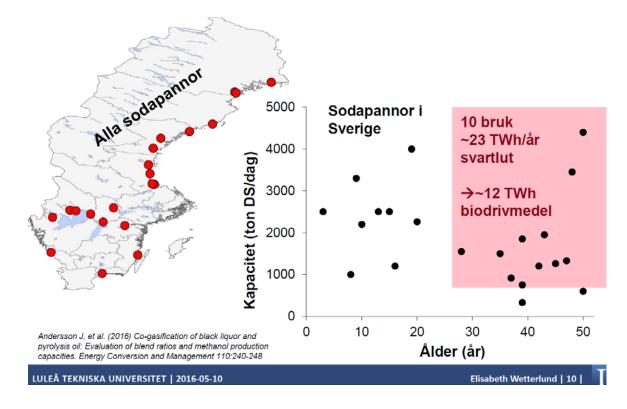
- Piteå (Chemrec) pilot plant operated more than 25,000 hours
- Domsjö (Chemrec): industrial scale, extensive planning, not built

SUMMETH

Potential for methanol production from biomass in Sweden

Methanol production as a function of biomass potential for different conversion efficiencies

Source: Landälv, I. 2017. Methanol as a renewable fuel – a knowledge synthesis. Report No. f3 2015:08. The Swedish Knowledge Centre for Renewable Transportation Fuels (f3)



Potential for methanol production from black liquor gasification in Sweden

Approx. 12 TWh of methanol = 2.2 million tonnes methanol

Marine Fuel Use – annual (examples)

North West Europe, vessels with ME						
250 kW – 1200 kW:	525 000 t					
Swedish Icebreaker Atle:	990 t					
Jupiter Road Ferry: Est.	700 t					
Swedish Road Ferries (all)	10 295 t					

Recovery boilers at Swedish kraft pulp mills by age and capacity

Source: Andersson, J. et al. 2016. Co-gasification of black liquor and pryolysis oil: Evaluation of belnd ratios and methanol production capacities. Energy Conversion and Management 110:240- 248.

Transport

- Methanol is regularly transported by road and rail
- Class 3 flammable liquid according to the UN dangerous goods classification (same category as many other liquid fuels)
- Transport by road according to ADR-S regulations; by rail according to RID

Bunkering

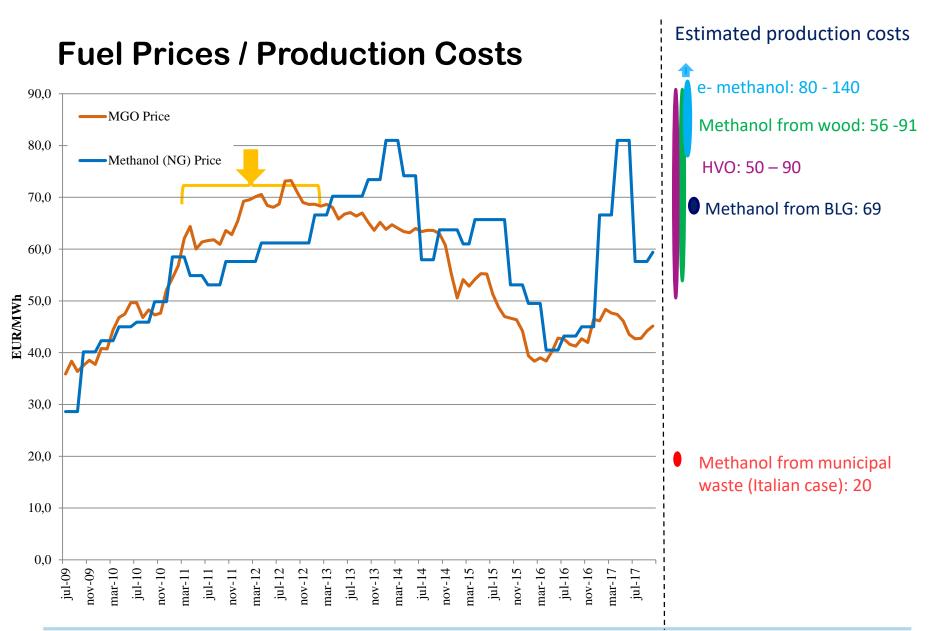
For conventional fuels:

- Ship to ship
 - only available on the West coast of Sweden and for larger vessels
- Truck to ship
 - Almost all bunkering on Sweden's east coast is truck to ship
 - Swedish road ferries, commuter ferries bunker this way
- Land to ship
 - the Swedish Icebreaker fleet bunkers from tank storage in Piteå (Preem)

For smaller recreational vessels, and some small commercial vessels, fuel (gasoline and diesel) can also be obtained from fuel pumps at harbours and marinas (similar to fuel stations for cars).

Bunkering

For methanol:


- SPIRETH project bunkered from a truck on deck
- Stena Germanica bunkers from tanker trucks via a pump station on shore

Most smaller vessels as investigated in the SUMMETH project already bunker by truck, thus infrastructure is not a problem.

SUMMETH

Data sources: Bunker Index for MGO, Methanex for Methanol NG (European contract price); Landälv (2017) methanol BLG; Landälv and Waldheim (2017) HVO and methanol from wood; languaniello et al. (2017) for methanol from municipal waste; Taljegård et al. 2015 for e-methanol

Sustainable Methanol for Smaller Vessels: Summary

Opportunities:

- Significant reduction of GHGs with renewable feedstock
- Large reductions in PM reductions
- Many local feedstocks and production opportunities
- Distribution system essentially in place, no challenges technically

Barriers:

 Economic: Cost for fuel – mechanisms for encouraging the use of renewables

Thank you!

